Overview

1. Natural Language Processing

2. Word Representation

3. Sequence Models

2. Word Representation

3. Sequence Models

- Introduction to NLP
- Tasks in NLP
 - Sentiment Classification
 - Language Modeling
 - Image Captioning
 - Named-Entity Recognition
 - Machine Translation
 - Text Summarization
 - Paraphrasing
 - Question-Answering
 - Chatbots

•

.

.

- Deep Learning based NLP Models
 - o RNN, GRU, LSTM
 - Attention + RNNs, GRUs, LSTMs
 - Transformer, BERT
 - GPT, GPT2, GPT3

Introduction to NLP:

o give computers the ability to read, understand and interpret human language.

A corpus may contain texts in a single language (*monolingual corpus*) or text data in multiple languages (*multilingual corpus*).

In order to make the corpora more useful for doing linguistic research, they are often subjected to a process known as annotation. An example of annotating a corpus is part-of-speech tagging, or *POS-tagging*, in which information about each word's part of speech (verb, noun, adjective, etc.) is added to the corpus in the form of *tags*. Another example is indicating the lemma (base) form of each word. When the language of the corpus is not a working language of the researchers who use it, interlinear glossing is used to make the annotation bilingual.

Some corpora have further *structured* levels of analysis applied. In particular, a number of smaller corpora may be fully parsed. Such corpora are usually called Treebanks or Parsed Corpora. The difficulty of ensuring that the entire corpus is completely and consistently annotated means that these corpora are usually smaller, containing around one to three million words. Other levels of linguistic structured analysis are possible, including

Tasks in NLP:

Sentiment Classification

"Wow. This movie is great. Awesome acting by DiCaprio. The screenplay is just perfect."

"I didn't like that movie at all. Too much of violence. The story line was too slow."

Tasks in NLP:

Sentiment Classification

"Wow. This movie is great. Awesome acting by DiCaprio. The screenplay is just perfect."

"I didn't like that movie at all. Too much of violence. The story line was too slow."

Tasks in NLP:

Named-Entity Recognition

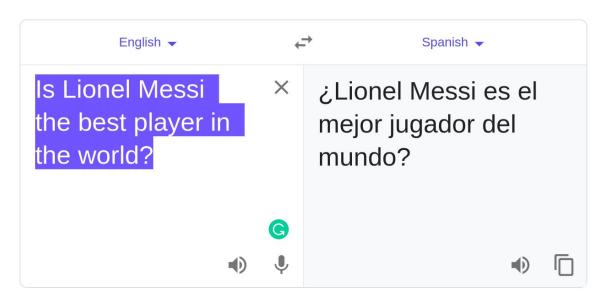
"I am Max. I work on Machine Learning at Apple. I'm interested on Generative Modeling; experienced on Computer Vision, Time Series Analysis and NLP."

"I am Max. I work on Machine Learning at Apple. I'm interested on Generative Modeling; experienced on Computer Vision, Time Series Analysis and NLP."

person names, organizations, locations, professions,

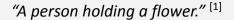
Tasks in NLP:

Machine Translation



Tasks in NLP:

Image Captioning

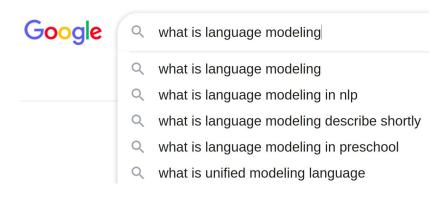


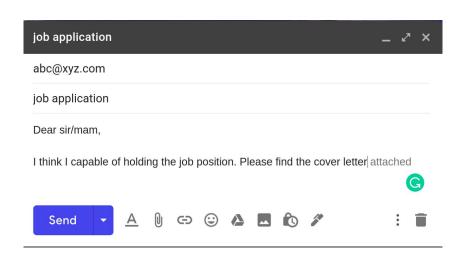
"Green limes isolated on white background" [2]

"A dog running in the green grass." [3]

Tasks in NLP:

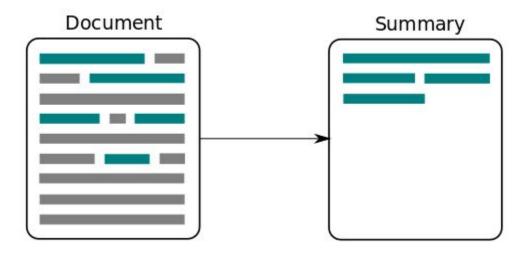
Language Modeling





Tasks in NLP:

• Text Summarization



order_pizza

Tasks in NLP:

Contextual Al assistants or Chatbots

action listen

The Neapolitan

pizza_choice

No problem. Do you want any extra toppings?

https://rasa.com/

Tasks in NLP:

Question-Answering

CBS broadcast Super Bowl 50 in the U.S., and charged an average of \$5 million for a 30-second commercial during the game. The Super Bowl 50 halftime show was headlined by the British rock group Coldplay with special guest performers Beyoncé and Bruno Mars, who headlined the Super Bowl XLVII and Super Bowl XLVIII halftime shows, respectively. It was the third-most watched U.S. broadcast ever.

Which network broadcasted Super Bowl 50 in the U.S.?

Ground Truth Answers: CBS CBS CBS

Prediction: CBS

What was the average cost for a 30 second commercial during Super Bowl 50?

Ground Truth Answers: \$5 million | \$5 million | \$5 million

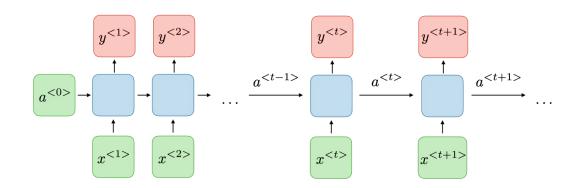
Prediction: \$5 million

Deep Learning based NLP models :

- RNN, GRU, LSTM
- Attention based RNNs
- Transformer, BERT
- GPT, GPT2, GPT3

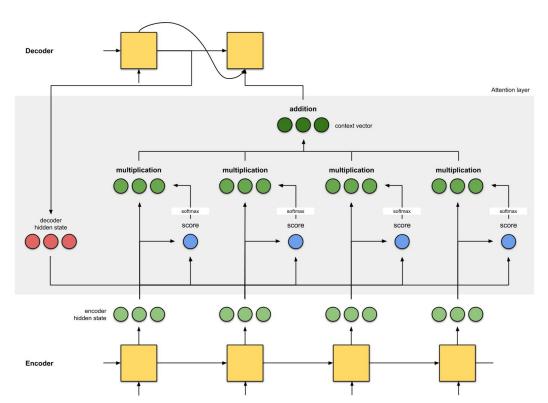
Deep Learning based NLP models :

- RNN, GRU, LSTM
- Attention based RNNs
- Transformer, BERT
- GPT, GPT2, GPT3



Deep Learning based NLP model:

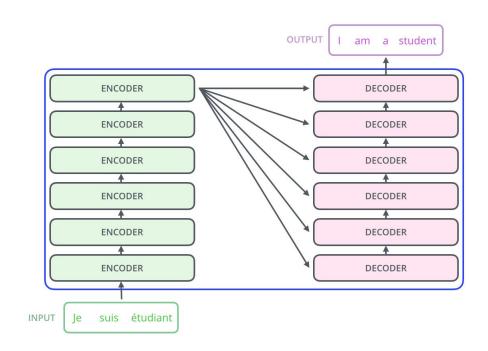
- RNN, GRU, LSTM
- Attention based RNNs
- Transformer, BERT
- GPT, GPT2, GPT3



Deep Learning based NLP models :

- RNN, GRU, LSTM
- Attention based RNNs
- Transformer, BERT
- GPT, GPT2, GPT3

Imagenet moment for NLP



2. Word Representation

3. Sequence Models

- 1. One Hot Encoding
- 2. Featurized Representation
- 3. Word2Vec

Sentence: Corona has affected the world adversely.

Sentence: Corona has affected the world adversely.

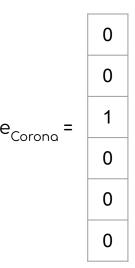
One-Hot Encoding

One-Hot Encoding

Corona	0	0	1	0	0	0
has	0	0	0	1	0	0
affected	0	1	0	0	0	0
the	0	0	0	0	1	0
world	0	0	0	0	0	1
adversely	1	0	0	0	0	0

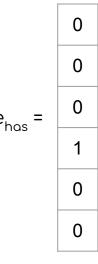
One-Hot Encoding

Corona	0	0	1	0	0	0	
has	0	0	0	1	0	0	
affected	0	1	0	0	0	0	
the	0	0	0	0	1	0	
world	0	0	0	0	0	1	
adversely	1	0	0	0	0	0	



One-Hot Encoding

Corona	0	0	1	0	0	0	
has	0	0	0	1	0	0	
affected	0	1	0	0	0	0	
the	0	0	0	0	1	0	
world	0	0	0	0	0	1	
adversely	1	0	0	0	0	0	



One-Hot Encoding

	Corona	0	0	1	0	0	0	
	has	0	0	0	1	0	0	
	affected	0	1	0	0	0	0	
	the	0	0	0	0	1	0	
	world	0	0	0	0	0	1	
a	dversely	1	0	0	0	0	0	

	0
	1
affected =	0
directed	0
	0
	0

One-Hot Encoding

	Corona	0	0	1	0	0	0	
	has	0	0	0	1	0	0	
	affected	0	1	0	0	0	0	
	the	0	0	0	0	1	0	
	world	0	0	0	0	0	1	
C	adversely	1	0	0	0	0	0	

	0
	0
the =	0
trie	0
	1
	0

One-Hot Encoding

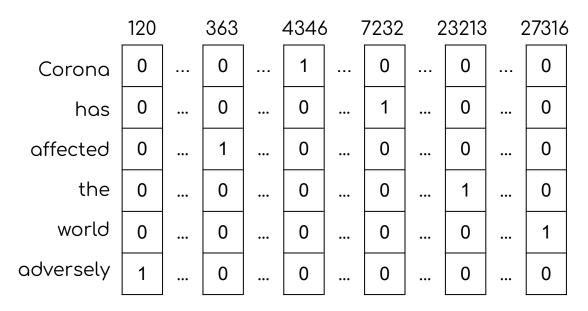
Vocabulary: [a, ..., adversely, ..., affected, ...,corona, ..., has, ..., the, ..., world, ...]

One-Hot Encoding

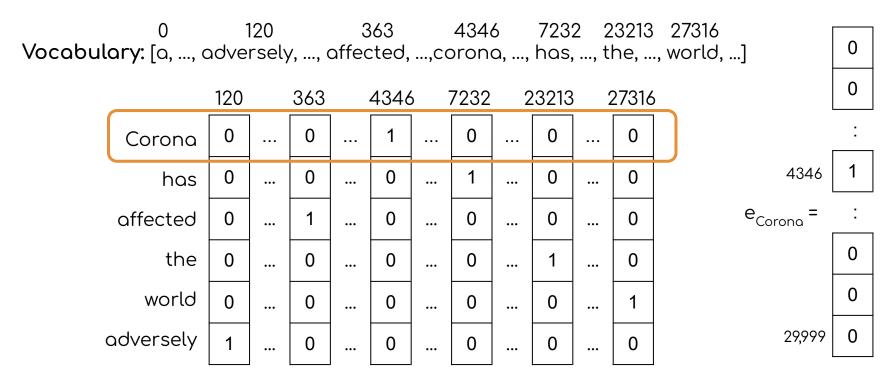
0 120 363 4346 7232 23213 27316 **Vocabulary:** [a, ..., adversely, ..., affected, ...,corona, ..., has, ..., the, ..., world, ...]

One-Hot Encoding

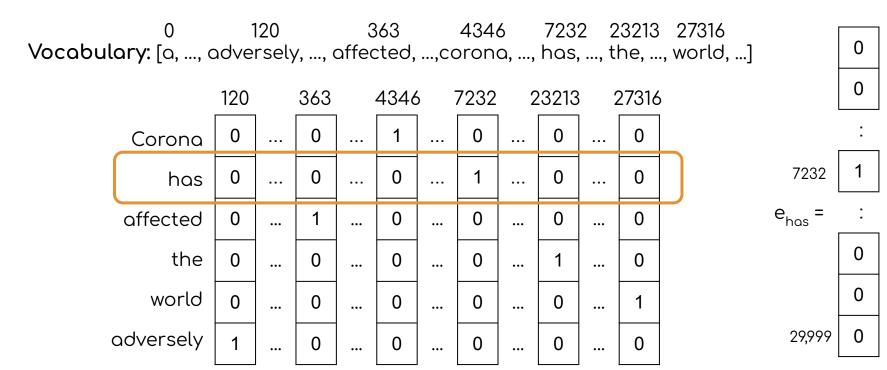
0 120 363 4346 7232 23213 27316 **Vocabulary:** [a, ..., adversely, ..., affected, ...,corona, ..., has, ..., the, ..., world, ...]



One-Hot Encoding



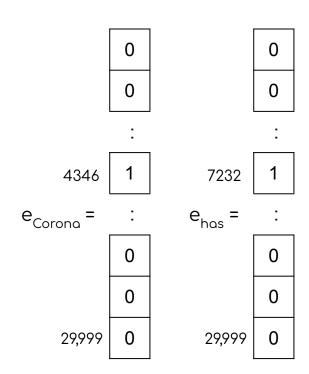
One-Hot Encoding



One-Hot Encoding

Pitfalls:

• Orthogonal Representation



			•••	
Man				
Woman				
King				
Queen				
Apple				
Orange				

_	Gender			
Man				
Woman				
King				
Queen				
Apple			•••	
Orange			•••	

	Gender			•
Man	-0.9			
Woman	0.9			
King	-0.9		•••	
Queen	0.9		•••	
Apple	0.01		•••	
Orange	0.02		•••	

	Gender	Royal			
Man	-0.9				
Woman	0.9				
King	-0.9				
Queen	0.9				
Apple	0.01			•••	
Orange	0.02			•••	

	Gender	Royal			
Man	-0.9	0.01			
Woman	0.9	0.001			
King	-0.9	1			
Queen	0.9	1			
Apple	0.01	0.02		•••	
Orange	0.02	-0.01			

	Gender	Royal	Age		
Man	-0.9	0.01			
Woman	0.9	0.001			
King	-0.9	1			
Queen	0.9	1		•••	
Apple	0.01	0.02		•••	
Orange	0.02	-0.01			

	Gender	Royal	Age		
Man	-0.9	0.01	0.03		
Woman	0.9	0.001	0.02		
King	-0.9	1	0.85		
Queen	0.9	1	0.78		
Apple	0.01	0.02	0.03	•••	
Orange	0.02	-0.01	0.02	•••	

	Gender	Royal	Age	Food	•••	•
Man	-0.9	0.01	0.03		•••	
Woman	0.9	0.001	0.02		···	
King	-0.9	1	0.85			
Queen	0.9	1	0.78			
Apple	0.01	0.02	0.03		···	
Orange	0.02	-0.01	0.02			

	Gender	Royal	Age	Food	
Man	-0.9	0.01	0.03	0.01	
Woman	0.9	0.001	0.02	0.001	
King	-0.9	1	0.85	-0.01	
Queen	0.9	1	0.78	0.0	
Apple	0.01	0.02	0.03	0.93	
Orange	0.02	-0.01	0.02	0.95	

-	Gender	Royal	Age	Food		300 th .
Man	-0.9	0.01	0.03	0.01		
Woman	0.9	0.001	0.02	0.001	•••	
King	-0.9	1	0.85	-0.01	•••	
Queen	0.9	1	0.78	0.0	•••	
Apple	0.01	0.02	0.03	0.93	•••	
Orange	0.02	-0.01	0.02	0.95	•••	

	Gender	Royal	Age	Food	•••	300 th .
Man	-0.9	0.01	0.03	0.01	•••	
Woman	0.9	0.001	0.02	0.001	•••	
King	-0.9	1	0.85	-0.01		
Queen	0.9	1	0.78	0.0	•••	
Apple	0.01	0.02	0.03	0.93	•••	
Orange	0.02	-0.01	0.02	0.95		

	Gender	Royal	Age	Food
Man	-0.9	0.01	0.03	0.01
Woman	0.9	0.001	0.02	0.001
King	-0.9	1	0.85	-0.01
Queen	0.9	1	0.78	0.0
Apple	0.01	0.02	0.03	0.93
Orange	0.02	-0.01	0.02	0.95

Featurized Representation

 $Man \rightarrow Woman$ as $King \rightarrow ?$

```
Man \rightarrow Woman as King \rightarrow ?
```

$$e_{Man} - e_{Woman} \approx e_{King} - e_{?}$$

```
Man \rightarrow Woman as King \rightarrow?
e_{Man} - e_{Woman} \approx e_{King} - e_{?}
e_{?} \approx e_{King} - e_{Man} + e_{Woman}
```

```
Man \rightarrow Woman as King \rightarrow?

e_{Man} - e_{Woman} \approx e_{King} - e_{?}

e_{?} \approx e_{King} - e_{Man} + e_{Woman}

e_{?} = arg \max sim(e_{W}, e_{King} - e_{Man} + e_{Woman})

w
```

Featurized Representation

 $Man \rightarrow Woman$ as $King \rightarrow ?$

$$e_{Man} - e_{Woman} \approx e_{King} - e_{?}$$

$$e_? \approx e_{King} - e_{Man} + e_{Woman}$$

$$e_? = arg max sim(e_W, e_{King} - e_{Man} + e_{Woman})$$

	Gender	Royal	Age	Food
Man	-0.9	0.01	0.03	0.01
Woman	0.9	0.001	0.02	0.001
King	-0.9	1	0.85	-0.01
Queen	0.9	1	0.78	0.0
Apple	0.01	0.02	0.03	0.93
Orange	0.02	-0.01	0.02	0.95

Featurized Representation

 $Man \rightarrow Woman$ as $King \rightarrow ?$

$$e_{Man} - e_{Woman} \approx e_{King} - e_{?}$$

$$e_? \approx e_{King} - e_{Man} + e_{Woman}$$

$$e_? = arg max sim(e_W, e_{King} - e_{Man} + e_{Woman})$$

$$e_{King} - e_{Man} + e_{Woman} =$$

	Gender	Royal	Age	Food
Man	-0.9	0.01	0.03	0.01
Woman	0.9	0.001	0.02	0.001
King	-0.9	1	0.85	-0.01
Queen	0.9	1	0.78	0.0
Apple	0.01	0.02	0.03	0.93
Orange	0.02	-0.01	0.02	0.95

Featurized Representation

Man \rightarrow Woman as King \rightarrow ?

$$e_{Man} - e_{Woman} \approx e_{King} - e_{?}$$

$$e_? \approx e_{King} - e_{Man} + e_{Woman}$$

$$e_{?}$$
 = arg max sim(e_{W} , e_{King} - e_{Man} + e_{Woman})

$$e_{King} - e_{Man} + e_{Woman} = [0.9, 0.991, 0.84, -0.019]$$

	Gender	Royal	Age	Food
Man	-0.9	0.01	0.03	0.01
Woman	0.9	0.001	0.02	0.001
King	-0.9	1	0.85	-0.01
Queen	0.9	1	0.78	0.0
Apple	0.01	0.02	0.03	0.93
Orange	0.02	-0.01	0.02	0.95

Man → Woman as King →?
e _{Man} - e _{Woman} ≈ e _{King} - e _?
e _? ≈ e _{King} - e _{Man} + e _{Woman}
$e_{?}$ = arg max sim(e_{W} , e_{King} - e_{Man} + e_{Woman})

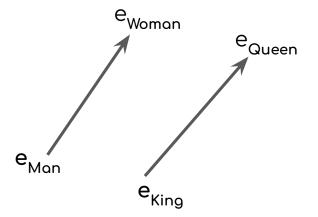
Man → Woman as King → ?	Gender	Royal	Age	Food	
e _{Man} - e _{Woman} ≈ e _{King} - e _?	Man	-0.9	0.01	0.03	0.01
e _? ≈ e _{King} - e _{Man} + e _{Woman}	Woman	0.9	0.001	0.02	0.001
e _? = arg max sim(e _W , e _{King} - e _{Man} + e _{Woman})	King	-0.9	1	0.85	-0.01
W	Queen	0.9	1	0.78	0.0
e _{King} - e _{Man} + e _{Woman} = [0.9, 0.991, 0.84, -0.019]	Apple	0.01	0.02	0.03	0.93
	Orange	0.02	-0.01	0.02	0.95

Mana Mana Kina N			
Man → Woman as King>?		Gender	Roy
e _{Man} - e _{Woman} ≈ e _{King} - e _?	Man	-0.9	0.01
$e_? \approx e_{King} - e_{Man} + e_{Woman}$	Woman	0.9	0.001
e _? = arg max sim(e _W , e _{King} - e _{Man} + e _{Woman}	King	-0.9	1
W	Queen	0.9	1
e _{King} - e _{Man} + e _{Woman} = [0.9, 0.991, 0.84, -0.019]	Apple	0.01	0.02
		0.00	0.01

	Gender	Royal	Age	Food
Man	-0.9	0.01	0.03	0.01
Woman	0.9	0.001	0.02	0.001
King	-0.9	1	0.85	-0.01
Queen	0.9	1	0.78	0.0
Apple	0.01	0.02	0.03	0.93
Orange	0.02	-0.01	0.02	0.95

Featurized Representation

Man → Woman as King --> Queen



Word2Vec

Word2Vec 1) Look up embeddings aardvark thou Thou shalt shalt shalt ... thou zyzzyva

Word2Vec

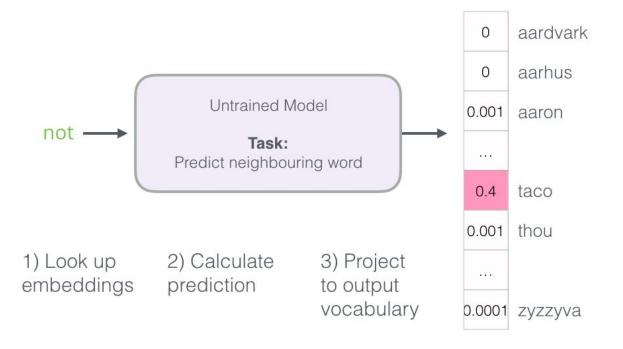
Thou shalt not make a machine in the likeness of a human mind

thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	

input word	target word
not	thou
not	shalt
not	make
not	a
make	shalt
make	not
make	a
make	machine
a	not
a	make
a	machine
a	in
machine	make
machine	a
machine	in
machine	the
in	а
in	machine
in	the
in	likeness

http://jalammar.github.io/illustrated-word2vec/

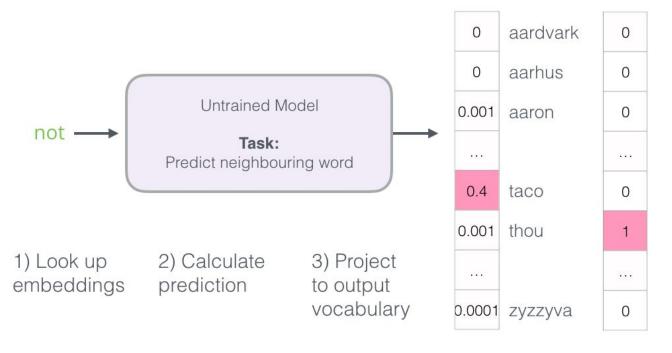
Word2Vec



http://jalammar.github.io/illustrated-word2vec/

Word2Vec

Actual Target



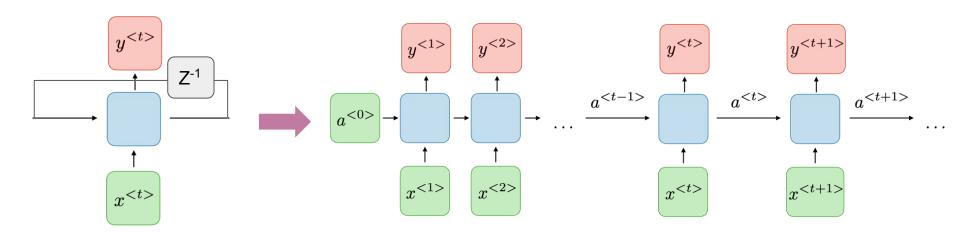
1. Natural Language Processing

2. Word Representation

3. Sequence Models

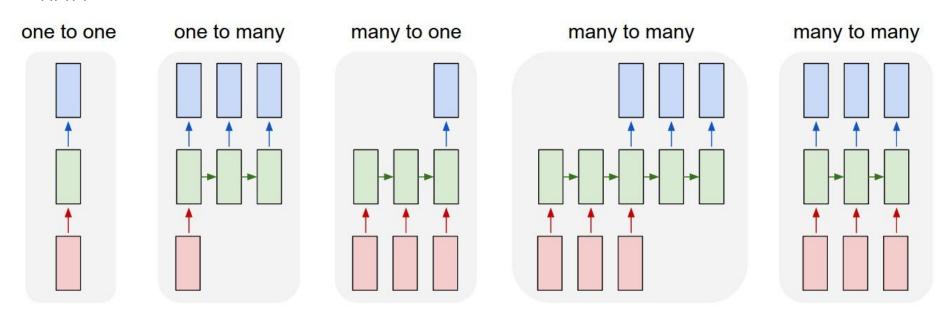
1. RNN

RNN



3. Sequence Models

RNN



http://karpathy.github.io/2015/05/21 /rnn-effectiveness/

Thank you!